GIS Hydropower Resources Mapping for ECOWAS Region

Session 1: Introduction

Funded by

Training, Dakar, Senegal, July 2016 Trainer: Harald Kling Pöyry, Hydro Consulting, Hydropower, Austria

COPYRIGHT@PÖYRY

Training program

Overview

- Day 1: General overview, group discussions
 - Overview about the study
 - General method
 - New layers for ECOWREX
 - Data challenges & Lessons learned
 - Flow estimation & Hydropower potential
 - Climate change projections
- Day 2: GIS layers, group work, practice examples
 - Hydropower classification:
 - Plant type
 - Plant size
 - Practice examples
 - Installed capacity & energy calculation
 - Water balance & climate change calculation

Introduction

Background & Objectives

- Background
 - Shortage of reliable energy supply is a critical topic in the 15 countries of ECOWAS.
 - The potential for future hydropower development is assumed to be large, but exact data are missing especially for small-scale hydropower development.
 - This study supports the energy initiatives of the "ECOWAS Centre for Renewable Energy and Energy Efficiency" (ECREEE).
- General project objectives
 - Assess the hydropower potential of all rivers in the ECOWAS region.
 - Prepare various data layers for integration into ECREEE's online platform ECOWREX, such that the study results are readily available to the general public.
 - Identify regions/rivers that are attractive for hydropower development to direct ECREEE's streamflow measurement initiatives.
 - This study focusses on hydropower potential for small-scale hydropower at small rivers, in addition to assessment for large rivers.

Hydropower potential

Definitions

• Gross theoretical hydropower potential

Hydropower generation if all natural water flows would be utilized by 100% efficient turbines.

• Theoretical hydropower potential

Rough consideration of energy losses due to turbine efficiency, hydraulic losses (penstock, etc.).

• Technical hydropower potential

Also considering spillway losses due to limited design flow of turbines.

Economic hydropower potential

Also considering economic restrictions (investment costs, energy prices).

• Exploitable hydropower potential

Also considering environmental and social restrictions (protected areas).

Hydropower theory

Theoretical hydropower potential of a river reach

Power [MW] = **Flow** [m³/s] * **Height** [m] * **c**

- **Power** Theoretical hydropower potential [MW]
- *Flow* Mean annual discharge in reach [m³/s]
- *Height* Elevation difference from start to end of river reach [m]
- c Constant, typically c = 8.5/1000

Hydropower theory

Aggregation of theoretical hydropower potential

- The theoretical hydropower potential is initially computed for each river reach.
- It gives the mean annual power (in MW) that could be produced in this river reach if a hydropower plant:
 - Utilizes the full head (elevation difference) in the reach
 - Turbinates the full river discharge (no spillway losses)
 - Turbine efficiency and hydraulic losses are already roughly considered
- Aggregation of theoretical hydropower potential:
 - River: Sum of theoretical hydropower potential of all reaches along the river
 - Basin: Sum of theoretical hydropower potential of main river and all tributaries in the basin
 - Country: Sum of theoretical hydropower potential of all basins in the country

Discharge measurement in West Africa

410 discharge gauges available for this study

- Discharge (along with slope) determines the hydropower potential of a river.
- Gauges usually located at medium/large rivers.
- Hardly any gauges located at small rivers that are suitable for small-scale hydropower.
- Gauge data cover different observation periods.

 Regionalization of flow is required.

COPYRIGHT@PÖYRY

GIS mapping & water balance modelling

GIS Hydropower Resources Mapping for ECOWAS Region July 2016

River network

GIS delineation of river reaches

- Method:
 - Hydrosheds flow direction
 - GIS processing (> 2 km² threshold for reach delineation)
 - Eliminate reaches with no discharge (in arid regions)
- 500,000 river reaches in West Africa
- Delineate sub-catchments
 - 1060 sub-catchments
 - Inland: > 3000 km²
 - At coast: > 1000 km²
 - Manual adjustments at reservoirs

Extract river elevation from DEM

Water balance modelling

Discharge estimation for 500,000 river reaches

Water balance model

- Spatially distributed
- Routing along river network
- Major losses:
 - Irrigation schemes
 - Floodplains

Inputs

- Rainfall
- Potential evapotranspiration

Output

- Mean annual discharge for each reach

Calibration

- 410 gauges used for calibration / verification of results
- Regional patterns of model parameters

Water balance modelling

Comparison of simulated vs. observed mean annual discharge at 410 gauges

GPCC data, 1950-2010 401 gauges with available Qobs

COPYRIGHT@PÖYRY

Theoretical hydropower potential

Computed for 500,000 river reaches

Power [MW] = **Flow** [m³/s] * **Height** [m] * **c**

CORDEX Africa climate change analysis

2046-2065 vs. 1998-2014

Median projection out of 30 climate model runs.

Results overview

New layers for ECOWREX system

- Existing hydropower plants layer
- Climatic zones layer
- River network layer
- Sub-areas layer (Sub-catchments)
- Country reports
- Climate change (incorporated into other layers)

New layer: Existing hydropower plants

GIS point shape file

- 91 HPPs:
 - 24 large HPPs (> 100 MW)
 - 17 medium HPPs (30-100 MW)
 - 50 small HPPs (< 30MW)</p>

- ~20 attributes (installed capacity, start year, reservoir area, etc.)
- Data sources:

ECOWREX, GranD, Aquastat, H&D, JICA, SHP News, World Small HPP Development Rep., Int. Water Power & Dam Yearbook, SE4ALL, online search, etc.

New layer: Existing hydropower plants

Attribute list for 91 HPPs

- Name: Name of HPP.
- Name_alt: Alternative name, if known.
- Country: Country of location of the HPP.
- ISO: Three letter country name acronym.
- Existing: Main status division (yes/no), further divided in the status attribute (see status attribute).
- Hpp_class: Capacity class according to the ECOWAS classification (small < 30MW, medium 30-100 MW, large > 100 MW).
- Status: Describes the status of the HPP in six categories: operational, under refurbishment, under construction (these three have the value Yes in the Existing attribute); identified, planned, proposed (these three have the value No in the Existing attribute).
- Lat: Latitude (decimal degrees North) of the location, snapped to river network.
- Lon: Longitude (decimal degrees East) of the location, snapped to river network.
- River: Name of the river where the HPP is located.
- River_alt: Alternative river name, if applicable.
- Year: Year of start of operation for existing HPPs. Estimated for HPPs under construction and under refurbishment.
- Dam_height: Height (m) of the main dam for existing HPPs.
- Cap_Instal: Installed capacity (MW) for operational HPPs and HPPs under refurbishment.
- Cap_Availa: Currently available capacity (MW) for operational HPPs.
- Cap_Planned: Planned capacity (MW) for HPPs under construction and under refurbishment.
- Volume: Reservoir volume (hm³) for existing HPPs.
- Lake_area: Reservoir area (km²) for existing HPPs.

Results overview

New layers for ECOWREX system

Existing hydropower plants layer

- Climatic zones layer
 - River network layer
 - Sub-areas layer (sub-catchments)
 - Country reports
 - Climate change (incorporated into other layers)

- 6 climatic zones
- Classification
 - L'Hôte et al. (1996)
 - Based on rainfall characteristics

- GIS generalization & smoothing
- Data sources
 - Rainfall: TRMM 1998-2014
 - Air temperature: CRU 1998-2013
 - Potential evapotranspiration: CRU 1998-2013

New layer: Climatic zones

Attribute list for 6 climatic zones

- CLZ_ID: ID of climatic zone
- NAME_FR: Climatic zone denomination in French
- NAME_ENG: Climatic zone denomination in English
- PRECIP_Y: Mean annual precipitation (mm) in the period 1998-2014
- TEMP_Y: Mean annual air temperature (°C) in the period 1998-2014
- ETP_Y: Mean annual potential evapotranspiration (mm) in the period 1998-2014
- P_2035_P25: Change in future mean annual precipitation in % (2026-2045 vs. 1998-2014) for the lower quartile projection of 30 RCMs
- P_2035_P50: Change in future mean annual precipitation in % (2026-2045 vs. 1998-2014) for the median projection of 30 RCMs
- P_2035_P75: Change in future mean annual precipitation in % (2026-2045 vs. 1998-2014) for the upper quartile projection of 30 RCMs
- T_2035_P25: Change in future mean annual air temperature in °C (2026-2045 vs. 1998-2014) for the lower quartile projection
- T_2035_P50: Change in future mean annual air temperature in °C (2026-2045 vs. 1998-2014) for the median projection
- T_2035_P75: Change in future mean annual air temperature in °C (2026-2045 vs. 1998-2014) for the upper quartile projection
- E_2035_P25: Change in future mean annual potential evapotranspiration in % (2026-2045 vs. 1998-2014) for the lower quartile simulation
- E_2035_P50: Change in future mean annual potential evapotranspiration in % (2026-2045 vs. 1998-2014) for the median simulation
- E_2035_P75: Change in future mean annual potential evapotranspiration in % (2026-2045 vs. 1998-2014) for the upper quartile simulation
- P_2055_P25: Change in future mean annual precipitation in % (2046-2065 vs. 1998-2014) for the lower quartile projection of 30 RCMs
- etc.

New layer: Climatic zones

2 figures attached to each climatic zone

Results overview

New layers for ECOWREX system

- Sub-areas layer (sub-catchments)
- Country reports
- Climate change (incorporated into other layers)

GIS line shape file

Q [m ³ /s]

- 0.0 1.0

- -100.1 1000.0

GIS line shape file

GIS line shape file

Attribute list for 500,000 river reaches, part 1/2

- ARCID: ID number of reach
- TOARCID: ID number of next downstream reach
- FROMARCID: ID number of dominant upstream reach (largest inflow)
- LAT: Latitude (decimal degrees North) at end of reach
- LON: Longitude (decimal degrees East) at end of reach
- NB: ID number of sub-area
- RIVER: River name (English)
- RIVER_FREN: River name (French)
- COUNTRY_1: Country (ISO code)
- COUNTRY_2: Second country (ISO code) if reach forms international border
- AREA: Total upstream catchment area (km²) of reach
- LENGTH: Length (km) of reach
- EXRIVER: Flag indicating external river originating from another sub-area (0: local river, 1: external river)
- ELEV_US: Elevation (m) at upstream end of reach
- ELEV_DS: Elevation (m) at downstream end of reach
- ELEV_DIFF: Elevation difference (m) in reach
- SLOPE: Slope (m/m) of reach
- POWER: Theoretical hydropower potential (MW) for the period 1998-2014
- POWER_SPEC: Specific hydropower potential (MW/km) for the period 1998-2014
- PLANT_SIZE: Preferred hydropower plant size (0: none, 1: <1MW, 2: 1-30MW, 3: >30MW installed capacity)
- ...

Attribute list for 500,000 river reaches, part 2/2

• ...

- Q_YEAR: Mean annual discharge (m³/s) simulated for the period 1998-2014
- Q_JAN: Mean monthly discharge (m³/s) 1998-2014 in January
- Q_FEB: Mean monthly discharge (m³/s) 1998-2014 in February
- Q_MAR: Mean monthly discharge (m³/s) 1998-2014 in March
- Q_APR: Mean monthly discharge (m3/s) 1998-2014 in April
- Q_MAY: Mean monthly discharge (m3/s) 1998-2014 in May
- Q_JUN: Mean monthly discharge (m³/s) 1998-2014 in June
- Q_JUL: Mean monthly discharge (m³/s) 1998-2014 in July
- Q_AUG: Mean monthly discharge (m³/s) 1998-2014 in August
- Q_SEP: Mean monthly discharge (m³/s) 1998-2014 in September
- Q_OCT: Mean monthly discharge (m3/s) 1998-2014 in October
- Q_NOV: Mean monthly discharge (m³/s) 1998-2014 in November
- Q_DEC: Mean monthly discharge (m³/s) 1998-2014 in December
- Q_2035_P25: Change in future mean annual discharge in % (2026-2045 vs. 1998-2014) for the lower quartile simulation using 30 RCM runs
- Q_2035_P50: Change in future mean annual discharge in % (2026-2045 vs. 1998-2014) for the median simulation using 30 RCM runs
- Q_2035_P75: Change in future mean annual discharge in % (2026-2045 vs. 1998-2014) for the upper quartile simulation using 30 RCM runs
- Q_2055_P25: Change in future mean annual discharge in % (2046-2065 vs. 1998-2014) for the lower quartile simulation using 30 RCM runs
- Q_2055_P50: Change in future mean annual discharge in % (2046-2065 vs. 1998-2014) for the median simulation using 30 RCM runs
- Q_2055_P75: Change in future mean annual discharge in % (2046-2065 vs. 1998-2014) for the upper quartile simulation using 30 RCM runs

Longitudinal river profiles for all reaches/rivers

COPYRIGHT@PÖYRY

Results overview

New layers for ECOWREX system

Sub-areas layer (sub-catchments)

- Country reports
- Climate change (incorporated into other layers)

New layer: Sub-areas (sub-catchments)

Attribute list for 1060 sub-areas, part 1/3

- NB: ID number of sub-area
- AREA: local size (km²) of sub-area
- PRECIP_Y: Mean annual precipitation (mm) in the period 1998-2014
- ETA_Y: Mean annual actual evapotranspiration (mm) simulated for the period 1998-2014
- RUNOFF_Y: Mean annual runoff (mm) simulated for the period 1998-2014
- TEMP_Y: Mean annual air temperature (°C) in the period 1998-2014
- P_2035_P25: Change in future mean annual precipitation in % (2026-2045 vs. 1998-2014) for the lower quartile projection of 30 RCM runs
- P_2035_P50: Change in future mean annual precipitation in % (2026-2045 vs. 1998-2014) for the median projection of 30 RCM runs
- P_2035_P75: Change in future mean annual precipitation in % (2026-2045 vs. 1998-2014) for the upper quartile projection of 30 RCM runs
- E_2035_P25: Change in future mean annual actual evapotranspiration in % (2026-2045 vs. 1998-2014) for the lower quartile simulation
- E_2035_P50: Change in future mean annual actual evapotranspiration in % (2026-2045 vs. 1998-2014) for the median simulation
- E_2035_P75: Change in future mean annual actual evapotranspiration in % (2026-2045 vs. 1998-2014) for the upper quartile simulation
- R_2035_P25: Change in future mean annual runoff in % (2026-2045 vs. 1998-2014) for the lower quartile simulation using 30 RCM runs
- R_2035_P50: Change in future mean annual runoff in % (2026-2045 vs. 1998-2014) for the median simulation using 30 RCM runs
- R_2035_P75: Change in future mean annual runoff in % (2026-2045 vs. 1998-2014) for the upper quartile simulation using 30 RCM runs
- T_2035_P25: Change in future mean annual air temperature in °C (2026-2045 vs. 1998-2014) for the lower quartile projection of 30 RCM runs
- T_2035_P50: Change in future mean annual air temperature in °C (2026-2045 vs. 1998-2014) for the median projection of 30 RCM runs
- T_2035_P75: Change in future mean annual air temperature in °C (2026-2045 vs. 1998-2014) for the upper quartile projection of 30 RCM runs
- P_2055_P25: Change in future mean annual precipitation in % (2046-2065 vs. 1998-2014) for the lower quartile projection of 30 RCM runs
- etc.
- ...

New layer: Sub-areas (sub-catchments)

Attribute list for 1060 sub-areas, part 2/3

- ...
- POWER: Theoretical hydropower potential (MW) for the period 1998-2014 (total of all river reaches located in the sub-area)
- POW_MINI: Theoretical hydropower potential (MW) for pico/micro/mini hydropower plants (< 1 MW installed capacity) for the period 1998-2014
- POW_SMALL: Theoretical hydropower potential (MW) for small hydropower plants (1-30 MW installed capacity) for the period 1998-2014
- POW_MEDIUM: Theoretical hydropower potential (MW) for medium/large hydropower plants (>30 MW installed capacity)
- ATT_MINI: Region with theoretical hydropower potential that is attractive (0: no, 1: yes) for pico/micro/mini hydropower plants (< 1 MW installed capacity)
- ATT_SMALL: Region with theoretical hydropower potential that is attractive (0: no, 1: yes) for small hydropower plants (1-30 MW installed capacity)
- ATT_MEDIUM: Region with theoretical hydropower potential that is attractive (0: no, 1: yes) for medium/large hydropower plants (> 30 MW installed capacity)
- PLANT_TYP1: Region suitable (0: no, 1: yes) for hydropower plant type 1 (run-of-river without diversion)
- PLANT_TYP2: Region suitable (0: no, 1: yes) for hydropower plant type 2 (run-of-river with diversion)
- PLANT_TYP3: Region suitable (0: no, 1: yes) for hydropower plant type 3 (storage without diversion)
- PLANT_TYP4: Region suitable (0: no, 1: yes) for hydropower plant type 4 (storage with diversion)
- MAC_MINI: Preferred machine type for pico/micro/mini hydropower plants (< 1 MW installed capacity)
- MAC_SMALL: Preferred machine type for small hydropower plants (1-30 MW installed capacity)
- MAC_MEDIUM: Preferred machine type for medium/large hydropower plants (> 30 MW installed capacity)
- ...

New layer: Sub-areas (sub-catchments)

Attribute list for 1060 sub-areas, part 3/3

• ...

- PT_2035_25: Change in future hydropower potential in % (2026-2045 vs. 1998-2014) for the lower quartile simulation using 30 RCM runs
- PT_2035_50: Change in future hydropower potential in % (2026-2045 vs. 1998-2014) for the median simulation using 30 RCM runs
- PT_2035_75: Change in future hydropower potential in % (2026-2045 vs. 1998-2014) for the upper quartile simulation using 30 RCM runs
- PL_2035_25: Change in future hydropower potential in % (2026-2045 vs. 1998-2014) of local rivers (originating from the same sub-area) for the lower quartile simulation using 30 RCMs
- PL_2035_50: Change in future hydropower potential in % (2026-2045 vs. 1998-2014) of local rivers (originating from the same sub-area) for the median simulation using 30 RCMs
- PL_2035_75: Change in future hydropower potential in % (2026-2045 vs. 1998-2014) of local rivers (originating from the same sub-area) for the upper quartile simulation using 30 RCMs
- PT_2055_25: Change in future hydropower potential in % (2046-2065 vs. 1998-2014) for the lower quartile simulation using 30 RCM runs
- etc.

Results overview

New layers for ECOWREX system

Existing hydropower plants layer

Climatic zones layer

Sub-areas layer (sub-catchments)

Country reports

• Climate change (incorporated into other layers)

New layer: Country reports

14 text documents with maps, tables and figures

COPYRIGHT@PÖYRY

Results overview

New layers for ECOWREX system

Existing hydropower plants layer

Climatic zones layer

River network layer

Sub-areas layer (sub-catchments)

Country reports (under preparation)

Climate change (incorporated into other layers)

Funded by

