

Cabo Verde's new Renewable-Energy-Friendly Grid Code

Bernd Weise DIgSILENT GmbH

International Workshop on Renewable Energy Development in Macaronesia and West Africa

Praia, Cabo Verde, May 30-31, 2016

Contents

- Organisational aspects and timeline of the grid code development
- The power systems of Cabo Verde
- Understanding of a grid code
- Challenges for development of Cabo Verde's grid code
- Technical aspects
- Conclusions

Organisational Aspects & Timeline of Grid Code Development

Organisational Aspects

- Project for grid code development initiated in 2015 by DGE / MTIDE (Cabo Verde) and GIZ (Germany) within the "Renewable Energies on Islands" project
- DIgSILENT subcontracted for advisory consultancy services
- Project carried out by DIgSILENT in close cooperation with DGE/MTIDE and GIZ

Timeline

- Project started in 4th quarter of 2015
- First field trip in January 2016
- First draft of the grid code in February 2016
- Second field trip in March 2016
- Final grid code version handed over beginning of April 2016 (EN & PT)

DGE = Direção Geral de Energia / Directorate-General Energy

MTIDE = Ministério do Turismo, Investimento e Desenvolvimento Empresarial / Ministry of Tourism, Investment and Business Development

GIZ = Deutsche Gesellschaft für Internationale Zusammenarbeit

Organisational Aspects & Timeline of Grid Code Development

First field trip

- January 2016
- Individual meetings with key stakeholders (companies and institutions):
 - organised and supported by DGE
 - in total 8 meetings
 - on 4 islands (Santiago, São Vicente, Sal, Boa Vista)

Second field trip

- March 2016
- Presentation and discussion of draft version of grid code
- Two 1-day sessions on two islands (Santiago and São Vicente)
- Large number of participants
- Positive, constructive and cooperative discussions

The Power Systems of Cabo Verde

Several electric island systems with different sizes

- 9 inhabited islands, each has its own islanded electric power system
- Sizes vary from approx. 500 kW to 35 MW (peak load of the systems)

Voltage levels

- High voltage (HV): 60 kV, only on Santiago
- Medium voltage (MV): mainly 20 kV (on some islands also 6.3 kV, 10 kV, 15 kV)
- Low voltage (LV): 230/400 V

Power generation

- Gen-sets with combustion engines using fuel oil or gasoline
- Wind power parks
- Solar photovoltaic (PV) parks and smaller PV installations

The Power Systems of Cabo Verde

Goals for future development

- Increase of renewable energies to 100%
 - Independence from fuel imports
 - Environmental aspects (decrease of pollution and CO₂ emission)
 - Green image important for tourist sector
- Distributed generation (net metering)
- Storage systems (to equalise the fluctuating power injection from renewables)

Understanding of a Grid Code

Network codes can have different tasks:

- Requirements for power generating installations
- Network operating guidelines (handbook)
- Requirements for demand side

The grid code developed for Cabo Verde defines requirements for future power generating installations and energy storage systems to ensure a stable, reliable and safe electric power supply with increasing renewable energies.

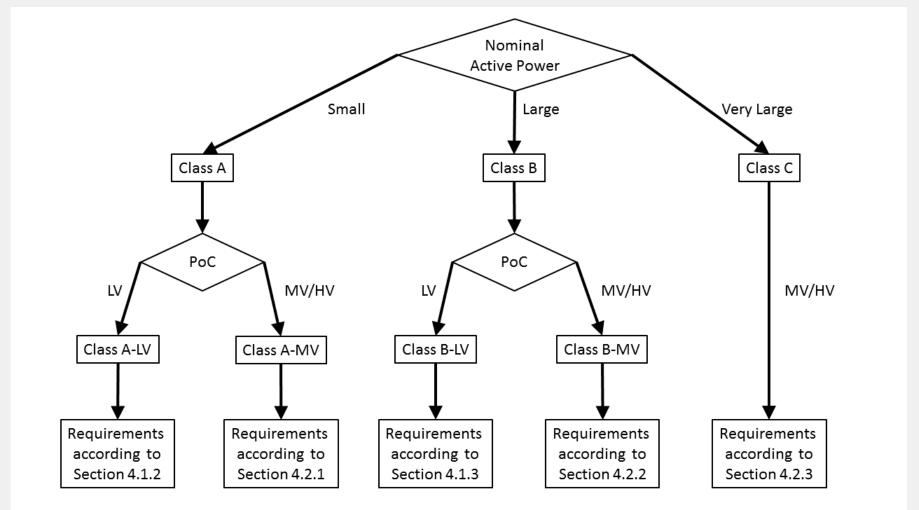
- It does not privilege any specific technology, but differentiates
 - synchronous generators (Type 1) and
 - other kinds of generators (Type 2).
- It is not a network operating handbook.
- It is an exclusively technical document.
- It does not describe a tender process or any framework for procurement.

Challenges for Development of Cabo Verde's Grid Code

- Requirements shall ensure operation with 100% renewable energies (RE)
 - ⇒ More power electronic converters
 - ⇒ Less conventional generators
 - ⇒ Lower short-circuit power
 - ⇒ Lower inertia (less rotating masses connected)
- Requirements shall apply to RE and conventional power generation
 - ⇒ Grid code applicable to different technologies
- As an increasing number of small distributed generation units may be connected to the low voltage network in the future, the grid code shall address these as well
 - ⇒ Grid code applicable to all voltage levels
- Grid code shall apply to power generation and storage systems
- Grid code shall apply for all islands
 - ⇒ Suitable for different sizes of electrical systems

The main philosophy of the grid code:

- Large power generating installations are considered to be system-critical
 - Behaviour of the system is dominated by these installations
 - Risk of system collapse in case of sudden loss of such an installation
 - "Large" in terms of nominal active power of the installation
 - "Large" is considered as 5% or more of peak load demand of the island
- Small power generating installations
 - A particular small installation itself can hardly impact the power system
 - A larger number of small installations can have a significant influence


The main philosophy of the grid code:

- Power generating installations connected to the MV or HV network "build" the grid:
 - Voltage control
 - Reactive power capability
 - Frequency control
 - Dynamic voltage support during network faults (keep the system "alive")
 - etc.
- Power generating installations connected to the LV network
 - Shall give limited support (e.g. limited frequency sensitive mode)
 - Should not get lost during network faults (as far as possible), but...
 - Safety first
 - Avoid unintended islanded operation of network feeders

Classes of Power Generating Installations and Energy Storage Systems

Technical Requirement	Class A-LV	Class B-LV	Class A-MV	Class B-MV	Class C
Neutral point connection	X	X	X	X	X
Voltage operating range	X	X	X	X	X
Frequency operating range	X	X	X	X	X
Limited Frequency Sensitive Mode – Overfrequency (LFSM-O)	X	X	X	(X)	(X)
Limited Frequency Sensitive Mode – Underfrequency (LFSM-U)	Storage	Storage	Storage	(X)	(X)
Frequency sensitive mode (FSM)				X	X
Synthetic inertia					X
Reactive power	X	X	X	X	X
Reactive power capability			X	X	X
Voltage control, reactive power control			X	X	X

Technical Requirement	Class A-LV	Class B-LV	Class A-MV	Class B-MV	Class C
Power quality	X	X	X	X	X
Undervoltage-Ride-Through (UVRT)	Type 2	Type 2	X	X	X
Overvoltage-Ride-Through (OVRT)	X	X	X	X	X
Dynamic Voltage Support during UVRT or OVRT			X	X	X
Protective disconnection devices	X	X	X	X	X
Overcurrent protection	X	X	X	X	X
Connection and reconnection conditions	X	X	X	X	X
Synchronisation		X	X	X	X
Disconnection / Soft-Shutdown		X		X	X
Remote Control Access	Limited	X	X	Χ	X
Fault recoding and PQ monitoring		X	Χ	X	X

0,90

0,85

-0,5

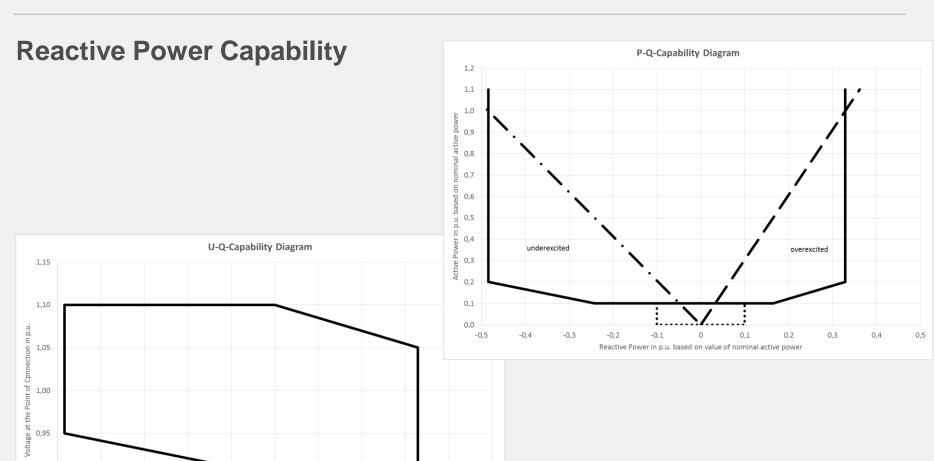
-0,4

underexcited

-0,2

-0,1

0


Reactive Power in p.u. based on value of nominal active power

0,1

-0,3

Technical Aspects

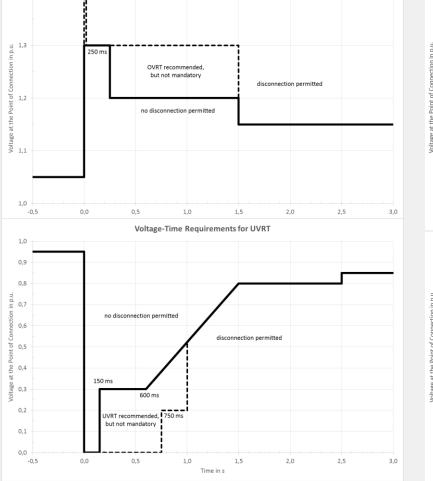
Figures for Type 2 installations

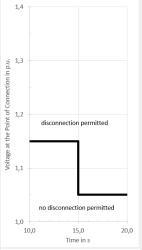
0,3

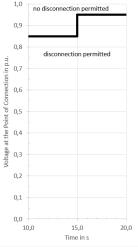
0,4

0,5

overexcited


1,4


Technical Aspects



Overvoltage- and Undervoltage-Ride-Through

Voltage-Time Requirements for OVRT

Figures for connections to MV or HV network

Dynamic Voltage Support during UVRT and OVRT

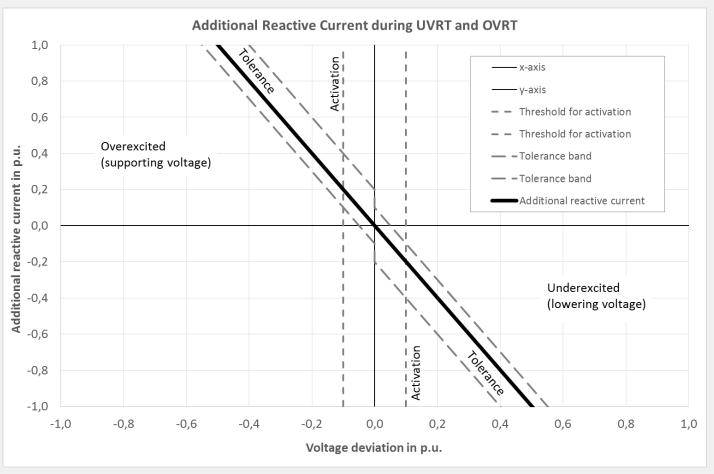


Figure drawn in generation-oriented way

Conclusions

- During the 1st quarter of 2016 a grid code has been developed for Cabo Verde
- Meetings and discussions with key stakeholders
- The grid code
 - Applies to
 - power generating installations and
 - energy storage systems
 - in all voltage levels (LV, MV, HV)
 - Does not privilege any specific technology
 - Defines technical requirements for power generating installations and energy storage systems to ensure a stable, reliable and safe electric power supply with increasing renewable energies
 - Comprises aligned technical requirements for different classes

Thank you very much! Muito obrigado!

Bernd Weise DIgSILENT GmbH

b.weise@digsilent.de