
# GIS Hydropower Resources Mapping for ECOWAS Region

# Session 5: Hydropower plants classification



Funded by





Training, Dakar, Senegal, July 2016

Trainer: Harald Kling

Pöyry, Hydro Consulting, Hydropower, Austria





## **Hydropower plants classification**

#### **Overview**

- Plant layout
   With or without diversion
   With or without storage
- Plant size
   Installed capacity
- Group work:
   Longitudinal river profiles



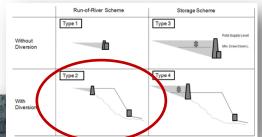
## **Hydropower plants classification**

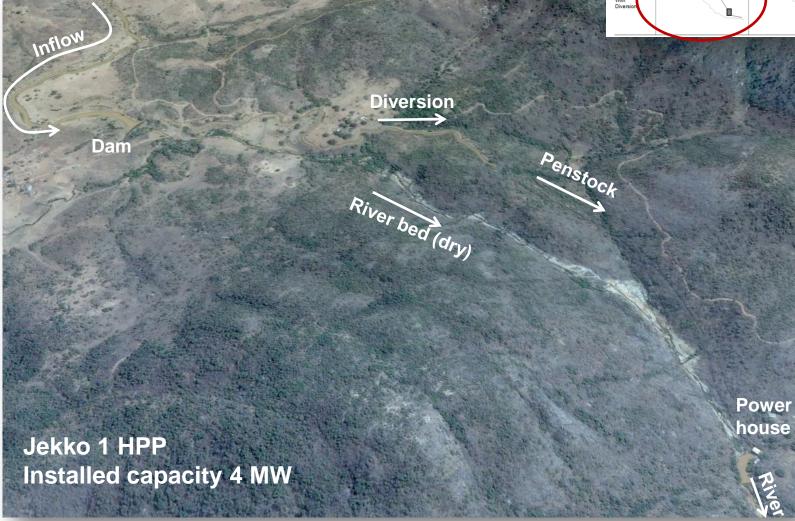
#### **Classification of plant type**





Run-of-River scheme without diversion






Type 4

#### Run-of-River scheme with diversion









Storage scheme with diversion







Type 1

Type 2

Storage scheme without diversion







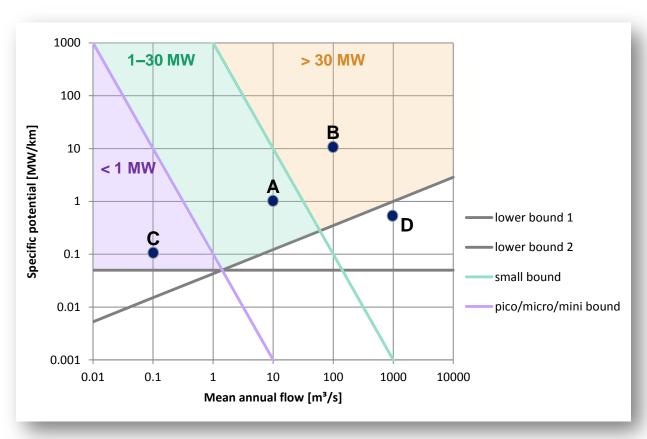
Type 1

#### Information in ECOWREX system

- Identification of areas suitable for specific plant types
- Attributes for GIS sub-area layer
  - PLANT\_TYP1: Region suitable (yes/no) for hydropower plant type 1 (run-of-river without diversion)
  - PLANT\_TYP2: Region suitable (yes/no) for hydropower plant type 2 (run-of-river with diversion)
  - PLANT\_TYP3: Region suitable (yes/no) for hydropower plant type 3 (storage without diversion)
  - PLANT\_TYP4: Region suitable (yes/no) for hydropower plant type 4 (storage with diversion)
  - A sub-area can be suitable for more than one plant type
- Classifcation system currently finalized, based on
  - General topographical characteristics of region
  - Flow characteristics
  - Hydropower potential



#### **Hydropower plants classification**


#### **Classification of plant size**

- Installed capacity
  - Key design parameter of hydropower plants
  - Used for classification of plant size
- Classification used in this study:
  - Pico/micro/mini HPP: < 1 MW installed capacity</li>
  - Small HPP: 1-30 MW installed capacity
  - Medium/large HPP: > 30 MW installed capacity
- Classification of river reaches
  - Preferred plant size was determined for each river reach (500,000 reaches)
  - Classification scheme based on:
    - Mean annual flow [m³/s]
    - Specific hydropower potential [MW/km]

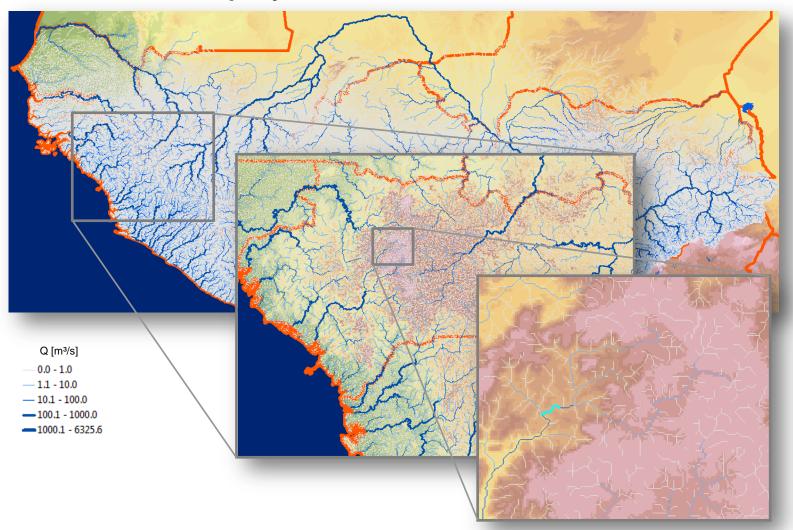


#### **Hydropower potential**

#### Classification of preferred plant size (installed capacity)



#### **Examples:**


- Reach A:
  - Mean annual flow = 10 m<sup>3</sup>/s
  - Specific potential = 1 MW/km
- Reach B:
  - Mean annual flow = 100 m<sup>3</sup>/s
  - Specific potential = 10 MW/km
- Reach C:
  - Mean annual flow = 0.1 m<sup>3</sup>/s
  - Specific potential = 0.1 MW/km
- Reach D:
  - Mean annual flow = 1000 m<sup>3</sup>/s
  - Specific potential = 0.7 MW/km

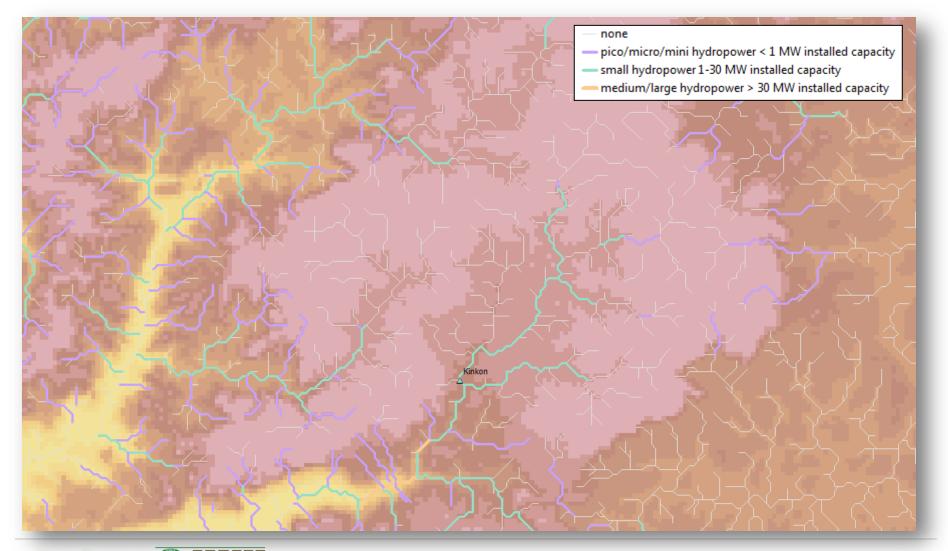




## River network layer

#### Zoom in and query attributes of river reaches

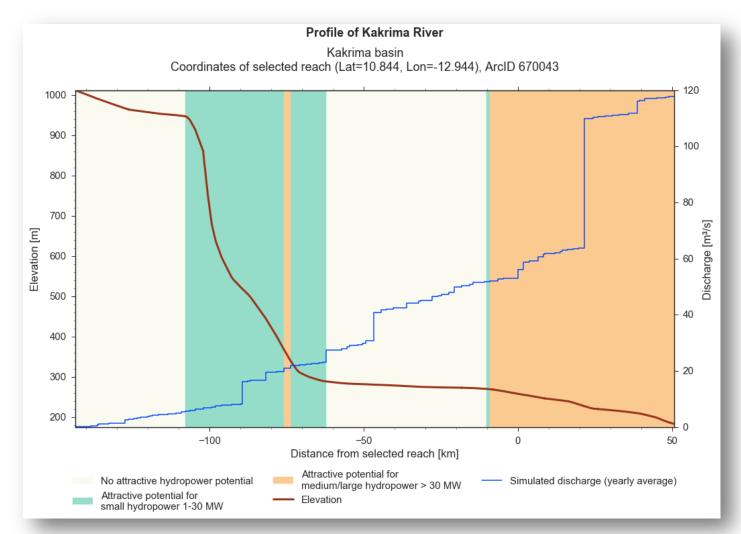



| Field               | Value    |
|---------------------|----------|
| ARCID               | 622220   |
| TOARCID             | 624320   |
| FROMARCID           | 620958   |
| NB                  | 307      |
| RIVER               | Kakrima  |
| RIVER_FREN          | Kakirima |
| COUNTRY_1           | GIN      |
| COUNTRY_2           |          |
| AREA                | 988.46   |
| LENGTH              | 4.82     |
| EXRIVER             | 0        |
| ELEV_US             | 497.5    |
| ELEV_DS             | 446      |
| ELEV_DIFF           | 51.5     |
| SLOPE               | 0.01069  |
| POWER               | 7.265    |
| POWER_SPEC          | 1.508    |
| Q_YEAR              | 16.60    |
| Q_JAN               | 3.18     |
| Q_FEB               | 2.83     |
| Q_MAR               | 3.89     |
| Q_APR               | 7.08     |
| Q_MAY               | 17.69    |
| Q_JUN<br>Q_JUL      | 35.38    |
| Q_JUL               | 46       |
| Q_AUG               | 42.46    |
| Q_SEP               | 21.23    |
| Q_OCT               | 10.61    |
| Q_NOV               | 5.31     |
| Q_DEC<br>Q_2035_P25 | 3.54     |
|                     | -5.4     |
| Q_2035_P50          | -1.1     |
| Q_2035_P75          | 4.2      |
| Q_2055_P25          | -8.8     |
| Q_2055_P50          | -0.2     |
| Q_2055_P75          | 3.4      |
| PLANT_SIZE          | 2        |
| LAT                 | 11.3104  |
| LON                 | -12.6521 |
|                     |          |





## River network layer


#### Reaches classified for plant size





#### **Hydropower potential**

#### Longitudinal river profiles: Preferred plant size shown as background







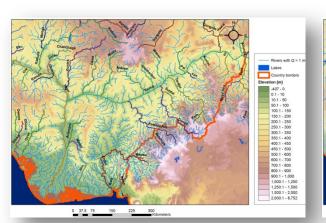
#### **Hydropower potential**

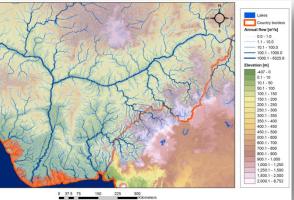
Longitudinal river profiles: Preferred plant size

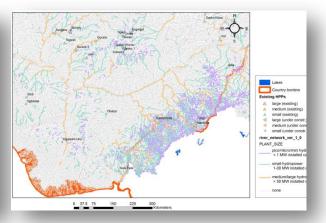
Zoom in to reach Switch between Q\_YEAR and PLANT\_SIZE view Click on reach and show attributes Note ARCID Create longitudinal profile In GIS pan along river and compare to long. plot Explain tributaries

switch to GIS presentation...




#### **Group work**


# AUSTRIAN DEVELOPMENT COOPERATION




#### Longitudinal river profiles

- Groups of 3-4 people
- Pick-up printed maps for your region of interest
- Study maps and discuss in group which river you would like to analyze in detail
- We will create the longitudinal plot together









