GIS Hydropower Resources Mapping for ECOWAS Region

Session 6: Hydropower plant size & Power generation

Funded by

Training, Dakar, Senegal, July 2016 Trainer: Harald Kling Pöyry, Hydro Consulting, Hydropower, Austria

COPYRIGHT@PÖYRY

Hydropower plant size & power generation

Overview

- Theory
 - Theoretical hydropower potential
 - Installed capacity
 - Power generation
- Group work
 - Select a river section
 - Calculate power generation
 - Test different design scenarios of installed capacity

Definitions

- Theoretical hydropower potential [MW]
 - Computed in this study
 - Hydropower generation if all natural water flows would be utilized. Includes rough consideration of turbine efficiency.
- Installed capacity [MW]
 - Key design decision (costs!)
 - Closely related to rated discharge of turbine
- Power generation [MW]
 - Power output during operation of HPP
 - Depends on:
 - Inflow time-series
 - Limited by installed capacity and rated discharge
 - Depends on hydraulic head, hydraulic losses, efficiency (turbine, generator, transformer)
 - Energy [MWh] = Power [MW] x Time [h]

Theoretical hydropower potential of a river reach

Power [MW] = **Flow** [m³/s] * **Height** [m] * **c**

- **Power** Theoretical hydropower potential [MW]
- *Flow* Mean annual discharge in reach [m³/s]
- *Height* Elevation difference from start to end of river reach [m]
- c Constant, typically c = 8.5/1000

Theoretical hydropower potential

Example for Guinea

Field Value ARCID 693004 TOARCID 693899 FROMARCID 690929 NB 310 Kakrima RIVER RIVER_FREN Kakirima COUNTRY 1 GIN COUNTRY_2 AREA 5701.17 LENGTH 3.09 EXRIVER 1 ELEV_US 215.4 212.8 ELEV_DS ELEV_DIFF 2.6 SLOPE 0.00086 POWER 2.494 POWER_SPEC 0.808 Q_YEAR 111.25 Q JAN 21.34 Q_FEB 18.97 Q_MAR 26.09 Q APR 47.43 Q_MAY 118.56 Q_JUN 237.12 Q_JUL 308.27 Q_AUG 284.55 Q_SEP 142.28 Q_OCT 71.14 Q_NOV 35.57 23.71 Q DEC Q_2035_P25 -5.4 Q 2035 P50 -0.9 4.3 Q_2035_P75 Q_2055_P25 -6.3 Q 2055 P50 0.9 Q_2055_P75 4 PLANT_SIZE 3 POWER [MW] 0.0 - 0.1 0.2 - 1.0 -1.1 - 30.0 100.1 - 568.0

Theoretical hydropower potential

Zoom in to reach Switch between Q_YEAR and POWER view Click on reach and show attributes Show existing HPP layer Explain sum of POWER for several reaches POWER depends on plant layout:

- Run-of-river with diversion
- Storage

switch to GIS presentation...

Power generation

POW = Qturb * eff * (RWL – TWL – HL) * 9.81 / 1000

- POW power output [MW]
- Qturb turbined discharge [m³/s]
- eff efficiency (turbine, generator, transformer) [/]
- RWL reservoir water level [m]
- TWL tailwater level [m]
- HL hydraulic losses (penstock, etc.) [m]

Constraints:

POW limited by installed capacity [MW]

Qturb limited by turbine capacity [m³/s]

Key design parameters!

Qturb also limited by environmental flow requirements!

Energy:

E [MWh] = POW [MW] * time [h]

Theoretical hydropower potential of a river reach

- P theoretical hydropower potential [MW]
- Q mean annual discharge in reach [m³/s]
- H elevation difference from start to end of reach [m]
- c constant, typically c = 8.5

Group work

Plant size and energy generation

- We will use GIS to select a river section as practice example
- Decision about plant layout
 - Run-of-River scheme without diversion
 - Run-of-River scheme with diversion
 - Storage scheme: balancing of flow variability, more complicated, not covered in training
- Query key data from the river network
- In Excel:
 - Rough energy calculation
 - Test different design scenarios for installed capacity

Group work

Plant size and energy generation

Data from GIS layer river network												
variable	value	units										
river	Boa											
ARCID us	890979											
ARCID ds	891899											
elev us	341.7	m										
elev ds	325	m										
height	16.7	m										
eff	0.9	/										
			User specified scenarios for installed capacity									
	P	inst [MW]	1	2	3	4	5	6	7	8	9	10
	Qra	ted [m³/s]	6.8	13.6	20.3	27.1	33.9	40.7	47.5	54.3	61.0	67.8
Mean power output [MW]		0.9	1.5	1.9	2.3	2.6	2.8	3.1	3.3	3.4	3.5	
Load factor [%]		90.1	72.5	62.9	57.0	51.3	46.9	43.8	40.8	38.0	34.8	
ual energy generation [MWh]		7895.8	12709.1	16522.2	19957.1	22473.3	24663.3	26853.3	28613.0	29994.5	30457.3	
			Calculated energy for design scenarios									
	[m³/s]	[MW]	[MW]	[MW]	[MW]	[MW]	[MW]	[MW]	[MW]	[MW]	[MW]	[MW]
month	Q monthl	Power	Power ou	Power ou	Power out	Power ou	Power out	Power out	Power out	Power out	Power out	Power out
1	4.52	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
									0.6	0.6	0.6	0.6
2	4.02	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.0			
2	4.02	0.6 0.8	0.6 0.8	0.6 0.8	0.6 0.8	0.6	0.6 0.8	0.6	0.8	0.8	0.8	0.8
2 3 4	4.02 5.53 10.05	0.6 0.8 1.5	0.6 0.8 1.0	0.6 0.8 1.5	0.6 0.8 1.5	0.6 0.8 1.5	0.6 0.8 1.5	0.6	0.0	0.8 1.5	0.8 1.5	0.8
2 3 4 5	4.02 5.53 10.05 25.13	0.6 0.8 1.5 3.7	0.6 0.8 1.0 1.0	0.6 0.8 1.5 2.0	0.6 0.8 1.5 3.0	0.6 0.8 1.5 3.7	0.6 0.8 1.5 3.7	0.6	0.8	0.8 1.5 3.7	0.8 1.5 3.7	0.8 1.5 3.7
2 3 4 5 6	4.02 5.53 10.05 25.13 50.26	0.6 0.8 1.5 3.7 7.4	0.6 0.8 1.0 1.0 1.0	0.6 0.8 1.5 2.0 2.0	0.6 0.8 1.5 3.0 3.0	0.6 0.8 1.5 3.7 4.0	0.6 0.8 1.5 3.7 5.0	0.6 0.8 1.5 3.7 6.0	0.8 0.8 1.5 3.7 7.0	0.8 1.5 3.7 7.4	0.8 1.5 3.7 7.4	0.8 1.5 3.7 7.4
2 3 4 5 6 7	4.02 5.53 10.05 25.13 50.26 65.34	0.6 0.8 1.5 3.7 7.4 9.6	0.6 0.8 1.0 1.0 1.0 1.0	0.6 0.8 1.5 2.0 2.0 2.0	0.6 0.8 1.5 3.0 3.0 3.0	0.6 0.8 1.5 3.7 4.0 4.0	0.6 0.8 1.5 3.7 5.0 5.0	0.6 0.8 1.5 3.7 6.0 6.0	0.0 0.8 1.5 3.7 7.0 7.0	0.8 1.5 3.7 7.4 8.0	0.8 1.5 3.7 7.4 9.0	0.8 1.5 3.7 7.4 9.6
2 3 4 5 6 7 7 8	4.02 5.53 10.05 25.13 50.26 65.34 60.31	0.6 0.8 1.5 3.7 7.4 9.6 8.9	0.6 0.8 1.0 1.0 1.0 1.0 1.0	0.6 0.8 1.5 2.0 2.0 2.0 2.0	0.6 0.8 1.5 3.0 3.0 3.0 3.0 3.0	0.6 0.8 1.5 3.7 4.0 4.0 4.0	0.6 0.8 1.5 3.7 5.0 5.0 5.0	0.6 0.8 1.5 3.7 6.0 6.0 6.0	0.8 0.8 1.5 3.7 7.0 7.0 7.0 7.0	0.8 1.5 3.7 7.4 8.0 8.0	0.8 1.5 3.7 7.4 9.0 8.9	0.8 1.5 3.7 7.4 9.6 8.9
2 3 4 5 6 7 8 9 9	4.02 5.53 10.05 25.13 50.26 65.34 60.31 30.16	0.6 0.8 1.5 3.7 7.4 9.6 8.9 4.4	0.6 0.8 1.0 1.0 1.0 1.0 1.0 1.0	0.6 0.8 1.5 2.0 2.0 2.0 2.0 2.0 2.0	0.6 0.8 1.5 3.0 3.0 3.0 3.0 3.0 3.0	0.6 0.8 1.5 3.7 4.0 4.0 4.0 4.0	0.6 0.8 1.5 3.7 5.0 5.0 5.0 4.4	0.6 0.8 1.5 3.7 6.0 6.0 6.0 4.4	0.0 0.8 1.5 3.7 7.0 7.0 7.0 4.4	0.8 1.5 3.7 7.4 8.0 8.0 4.4	0.8 1.5 3.7 7.4 9.0 8.9 4.4	0.8 1.5 3.7 7.4 9.6 8.9 4.4
2 3 4 5 6 7 7 8 9 9 10	4.02 5.53 10.05 25.13 50.26 65.34 60.31 30.16 15.08	0.6 0.8 1.5 3.7 7.4 9.6 8.9 4.4 2.2	0.6 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.6 0.8 1.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.6 0.8 1.5 3.0 3.0 3.0 3.0 3.0 3.0 2.2	0.6 0.8 1.5 3.7 4.0 4.0 4.0 4.0 2.2	0.6 0.8 1.5 3.7 5.0 5.0 5.0 4.4 2.2	0.6 0.8 1.5 3.7 6.0 6.0 6.0 6.0 4.4 2.2	0.0 0.8 1.5 3.7 7.0 7.0 7.0 7.0 4.4 2.2	0.8 1.5 3.7 7.4 8.0 8.0 4.4 2.2	0.8 1.5 3.7 7.4 9.0 8.9 4.4 2.2	0.8 1.5 3.7 7.4 9.6 8.9 4.4 2.2
2 3 4 5 6 7 8 9 9 10 11	4.02 5.53 10.05 25.13 50.26 65.34 60.31 30.16 15.08 7.54	0.6 0.8 1.5 3.7 7.4 9.6 8.9 4.4 2.2 1.1	0.6 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.6 0.8 1.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.1	0.6 0.8 1.5 3.0 3.0 3.0 3.0 3.0 2.2 1.1	0.6 0.8 1.5 3.7 4.0 4.0 4.0 4.0 2.2 1.1	0.6 0.8 1.5 3.7 5.0 5.0 5.0 4.4 2.2 1.1	0.6 0.8 1.5 3.7 6.0 6.0 6.0 4.4 2.2 1.1	0.0 0.8 1.5 3.7 7.0 7.0 7.0 7.0 4.4 2.2 1.1	0.8 1.5 3.7 7.4 8.0 8.0 4.4 2.2 1.1	0.8 1.5 3.7 7.4 9.0 8.9 4.4 2.2 1.1	0.8 1.5 3.7 7.4 9.6 8.9 4.4 2.2 1.1

Group work

Plant size and energy generation

Monthly power output

Funded by

Load factor [%]

Load factor

100 90

80

70

60

50 40

30

Load factor [%]

COPYRIGHT@PÖYRY

GIS Hydropower Resources Mapping for ECOWAS Region July 2016