GIS Hydropower Resources Mapping for ECOWAS Region

Session 7: Water balance

Funded by

Training, Dakar, Senegal, July 2016 Trainer: Harald Kling Pöyry, Hydro Consulting, Hydropower, Austria

COPYRIGHT@PÖYRY

Water balance

Overview

- Water balance theory
- Group work
 - Simple water balance calculation
 - Simple climate change scenario analysis

Water balance

Why is it important for hydropower?

- The water balance describes how much runoff is generated from rainfall.
- Understanding the water balance is crucial for understanding regional variations in discharge, and thus hydropower potential.
- Any changes in the water balance causes changes in hydropower generation:
 - Natural variations in rainfall from year to year
 - Climate change

Water balance modelling

Basics: Annual water balance equation

Example: Upper Black Volta (Burkina Faso)

Precip = Runoff + Evapo + ΔS 1000 mm/y 100 mm/y 900 mm/y 0 mm/y

Runoff is only a small component of the water balance!

Budyko annual water balance relationship:

ETA: annual actual evapotranspiration [mm] ETP: annual potential evapotranspiration [mm] P: annual precipitation [mm] c: model parameter

Water balance in West Africa

Sub-area simulation results for 1998-2014

COPYRIGHT@PÖYRY

Water balance

Show sub-areas Switch view between PRECIP_Y, ETA_Y, RUNOFF_Y Click on sub-areas and show attributes

switch to GIS presentation...

COPYRIGHT@PÖYRY

GIS Hydropower Resources Mapping for ECOWAS Region 7 July 2016

Annual water balance

How to make a simple water balance estimation

ETA: annual actual evapotranspiration [mm] ETP: annual potential evapotranspiration [mm] P: annual precipitation [mm] c: model parameter

Annual water balance

How to make a simple water balance estimation

- Step 1: Get input data
- Precipitation (P) [mm]
- Potential evapotranspiration (ETP) [mm]
- Area [km²]

Step 2: Use Budyko plot

Step 3: Compute Runoff [mm] Runoff = P - ETA

Step 4: Compute Discharge [m³/s] Q = Runoff * Area / Time

Discharge [m³/s] = Runoff [mm] * Area [km²] / Time [s] * 1000 Time [s] = 365 days * 24 hours * 60 minutes * 60 seconds

P: annual precipitation [mm]

c: model parameter

ETP: annual potential evapotranspiration [mm]

Group work

Water balance estimation

- Groups of 3-4 people (same as before)
- Select river of interest (use your maps)
- Ask me for input data from GIS
- Make water balance calculation
 - Use Budyko plot (see hand-out)
 - Compute Runoff
 - Compute Discharge
- Report results
 - We will compare to discharge value of GIS river network layer

Group work

Water balance estimation

- Reasons for difference in discharge between simple estimation and GIS river network layer
 - Different Budyko curve parameter (result of model calibration!)
 - Non-linear water balance relationship
 - In practice example we made lumped water balance calculation.
 - But water balance model was applied spatially distributed (for each river reach).
 - Diversions
 - Irrigation
 - Floodplains
- Simulation results are more sensitive in semi-arid basins than in humid basins
 - A small "error" in model parameter can cause large bias for simulated discharge of semi-arid basin
 - Discharge of semi-arid basin is also more sensitive to possible changes in climate

Group work

Water balance estimation & Climate change scenarios

- Same method as before
- Use climate change scenarios:
 - Future increase in precipitation: +10%
 - Future decrease in precipitation: -10%
 - Warming by +2°C: +5% in potential evapotranspiration
- Re-calculate the water balance for climate change scenarios
 - Use Budyko plot (see hand-out)
 - Compute Runoff
 - Compute Discharge
- Report results
 - Percentage change in discharge for climate change scenarios

Example:
Precip = 1000 mm
Precip + 10% = 1000 mm * 1.10 = 1100 mm
Precip – 10% = 1000 mm * 0.90 = 900 mm

Funded by

