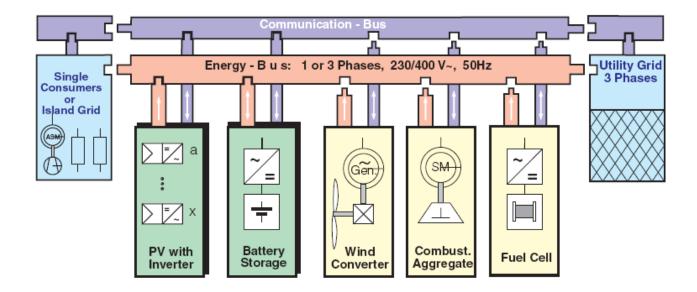
ECREEE Regional Workshop on the ECOWAS Solar Energy Initiative (ESEI)

Dakar, Senegal

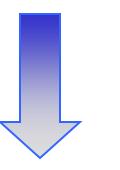
Oct 19th, 2010

The PV Trends in developing countries


Miguel A. Egido Aguilera Instituto de Energía Solar - Universidad Politécnica de Madrid

Some Facts about PV Rural Electrification

- Over the last decades PV has shown its potential as a technology for decentralized rural electrification in developing countries.
- PV systems are now being integrated in large rural electrification programs in different parts of the world.
- Programmes and studies now address the issues related to large-scale market development in rural areas:
 - Access to affordable credit,
 - local market infrastructure for installing and servicing PV systems, and
 - mechanisms for conductive local policy-making.
- the impact of the application of solar PV for rural electrification is more substantial than generally recognized
- In many countries, the growth rate of solar rural electrification exceeds that of conventional electrification with diesel microgrids or extension of the main grid.
- Lack of statistics on PV rural electrification


Trends in PV off-grid system technology

- Charge regulator with Maximum Power Point Tracking
- Bidirectional inverter: Battery charger and inverter
- PV modules designed for grid connected installations
- PV Hybrid systems

TECHNICAL STATUS OF PV RURAL ELECTRIFICATION

High growth rate of PV installations Development of PV components poorly coordinated Balance of System complexity underestimated Mediocre Installations

QUALITY CONTROL

- Standardisation
- Certification:
 - System
 - PV Components
 - Installation

Main Faults observed

Shadows on the modules PV components bad placed Low initial state of charge in the batteries Charge regulators:

- Lack of protections
- inadequacy with the battery
- Wiring
 - insufficient cross section
 - no polarity identification

Lamps

- Premature fade-out of the tube
- insulation faults

Electromagnetic interferences

PV Rural Electrification project evaluation

- ✓ Finished this year
- ✓ Investment: 10 millions €
- ✓ Total Power Installed: 440 kWp
- ✓ Number of PV systems: 430
- ✓ Peak Power per system: 800 1200 Wp
- ✓ Use: Electricity for Schools and Health Centers

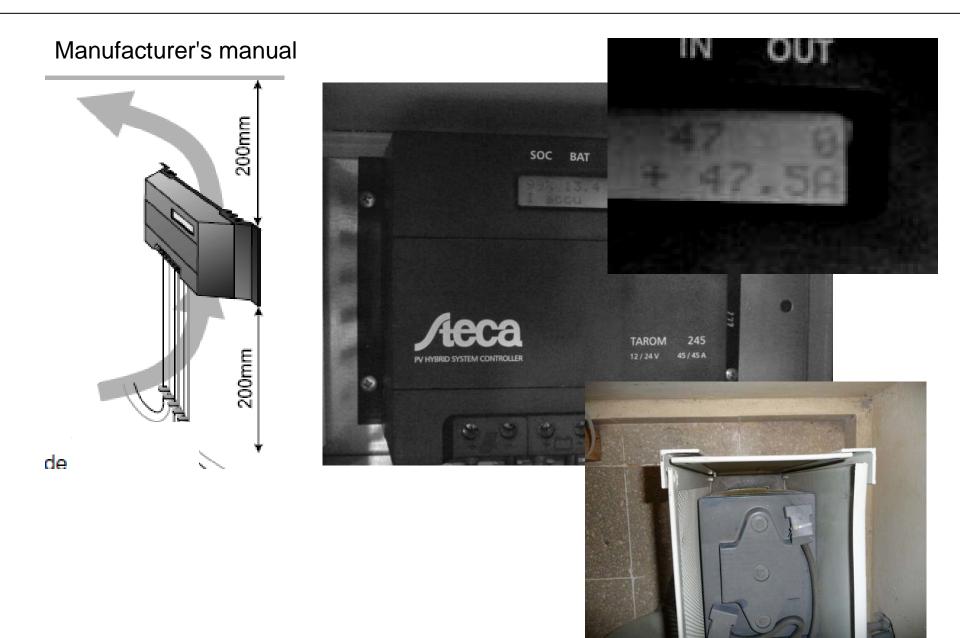
PV Modules and Structures 1

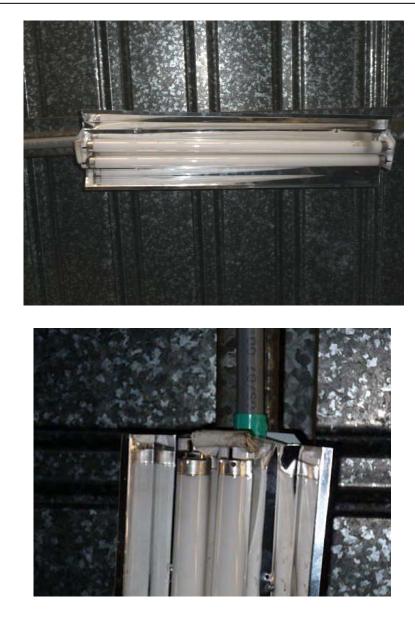
PV Modules and Structures 2

Batteries

Paralell configuration

Connections not well tight


Charge controller 1


12 V subsystems

Two charge controllers and inverter per subsystem

Charge controller 2

Lamps and wiring

Social acceptance of PV technology

Lessons learnt from this project

✓ Good quality in B.O.S. components and acceptable PV

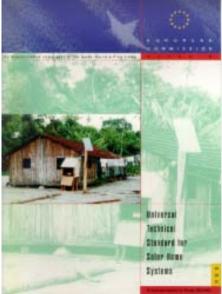
modules

- Mistakes on systems design
- ✓ Lack of knowledge in quality control procedures
- Defective commissioning procedure
- ✓ Lack of users training

Our Quality Control approach

Certification process accessible to local markets

- Main end-users
- technical sophistication is not a synonym of quality improvement
- Installation and maintenance are local activities


Standardisation: Universal Technical Standard for Solar Home System

- Prescriptions for:
 - PV components
 - Installation
 - PV system

Certification: Solar Home System Test Procedures

- Standard Compliance Certificate
- Test for DC/AC Stand-Alone converters

Commissioning: *Guidelines* O&M and evaluation: *Guidelines*

www.taqsolre.net

Some examples of aplication

- **PVMTI:** Morocco, India and Kenya
- ADEME: Burkina Fasso and Mauritania
- Filipinas: National Power Corporation
- DANIDA: Malawi, Ghana, Mozambique and Nepal
- Perú: GEF project (4600 SHS)
- Bolivia: Technical specification NB 1056

General conclusions

Taquile Island – Titicaca Lake (Peru)

✓ PV Stand Alone Systems Technology is not fully reliable yet

Certification process must be accesible to local markets

- Norms with low flexibility can be detrimental for the local markets development
- increase of the technological dependence
- ✓ Sustainability of PV rural electrification projects is improved when the technical quality is reinforced
 - reliability of PV systems would be enhanced
 - availability, safety and maintainability are strongly dependents of non-technical factors.

Improving quality means improving electricity service for final users

Thank you for your attention

