

ECREEE Regional Workshop on the ECOWAS Solar Energy Initiative (ESEI) 18 - 21 October 2010, Dakar, Senegal Werner Klaus, Lahmeyer International GmbH

EMPower Program – Development of Large Scale Solar Power in Emerging and Developing Countries

Objectives

- Support Solar Power Market Development in sunbelt countries
- Accelerate global demand for PV & CSP and cost reduction
- Raise Awareness for the Cost and Value of Solar Power
- Outputs
 - Pre-feasibility Studies Assist Utilities in development of large scale solar power projects
 - Project Information Memorandae (PIM) Present key project data to stakeholders and investors
 - **Industry Advisory Board** Link-up with solar industry
 - Workshops get governments and stakeholders involved and share information

EMPower Program – Key Data

- Sponsors: KfW and UNEP/GEF
- Duration:
 - Jul 2008 Jun 2010
- Countries:

• Participants:

Lahmeyer International GmbH

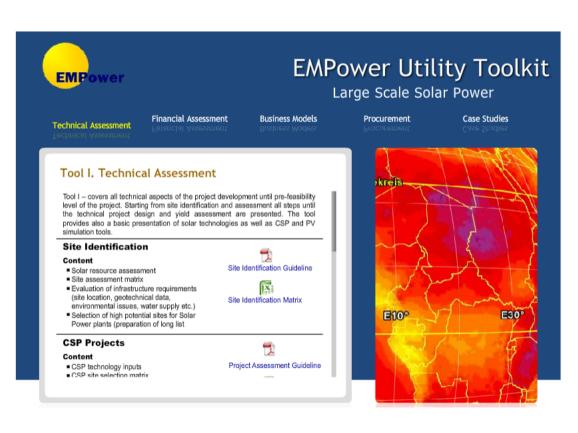
0

2010

- Private and
 State owned Utilities
- Renewable Energy Agencies
- Power / Energy Ministries

EMPower Program – Project Pipeline

Country	Partner	Techn	ology
 Algeria 	NEAL	CSP	100 MW
 Egypt 	NREA	CSP	100 MW
	NREA	PV	100 MW + 2 MW off-grid
• El Salvador	CEL	PV	5 MW
 India 	RELIANCE	CSP	50/100 MW
 India 	SPICE	PV	25 MW
 Jordan 	MEMR	CSP	50 MW
 Kenya 	REV/KenGen	PV	5 MW
 Libya 	REAOL	CSP	100 MW
		PV	15 MW
 Morocco 	ONE	CSP	50 MW
 Philippines 	CEPALCO	PV	1 MW


© Lahmeyer International GmbH September 2010

ECREEE Regional Workshop - ECOWAS Solar Energy Initiative (ESEI) – Dakar 2010

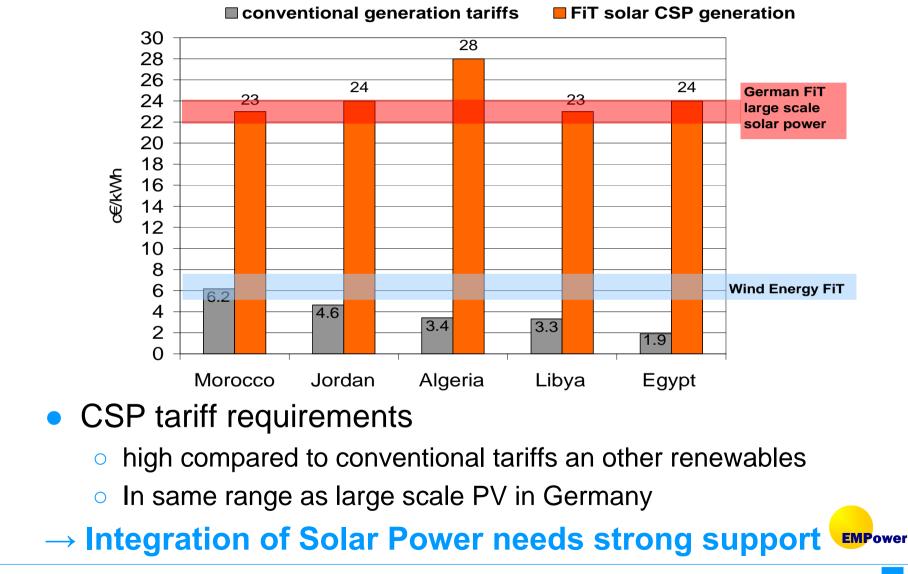
EMPower Utility Toolkit Large Scale Solar Power

- Technical, Financial and Economic Assessment
- Business Models & Lenders
 Package
- Tendering and Procurement
- Case Studies

 \rightarrow online access

http://empower-ph2.com/EMPowerToolkit/

ECREEE Regional Workshop - ECOWAS Solar Energy Initiative (ESEI) – Dakar 2010

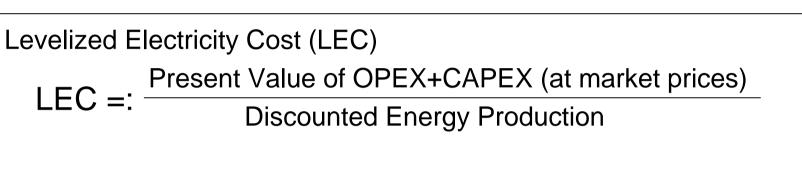

EMPower Workshops – Selected Findings

- Solar Power Markets are developing at high pace (volume↑ prices ↓) → Solar will play central role;
- Solar Power requires currently 18 to 30 c€/kWh;
 → gap of 200 400% to conventional power
 → exception: off-grid diesel systems, PV feasible!
- Tariff requirement in Africa (e.g. Kenya 27 c€/kWh) higher than tariffs paid in Germany (24 c€/kWh)!
 - Cost of equity and loans
 - Project and country risk
- Consumer Grid Parity (household & industrial) is close
- Strong support is required to introduce solar power
 - Framework: grid access, priority dispatch, "cost plus" tariffs
 - Long term political commitment

EMPower

EMPower – Lessons Learned (1)

ECREEE Regional Workshop - ECOWAS Solar Energy Initiative (ESEI) – Dakar 2010


Lahmeyer International GmbH

0

EMPower – Lessons Learned (2)

LEC vs FiT – definition of the different concepts

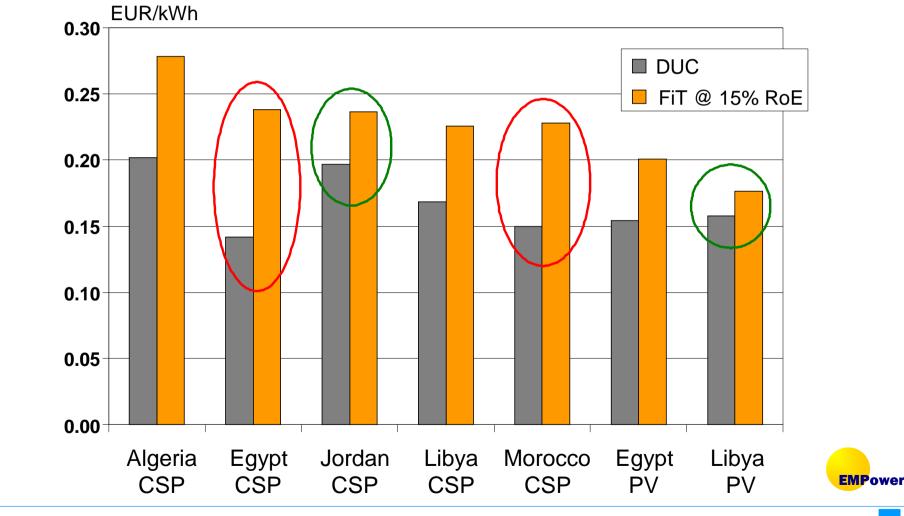
"pure unit cost of power generation"

Fed-in Tariff requirement (FiT):

FiT =: PV of (OPEX+Debt Service+Dividends+Cash Reserve) Discounted Energy Production

"unit remuneration required to make project profitable"

Note: WACC assumed as discount rate; Interest rates below market rates assumed


Lahmeyer International GmbH

0

EMPower – Lessons Learned (2)

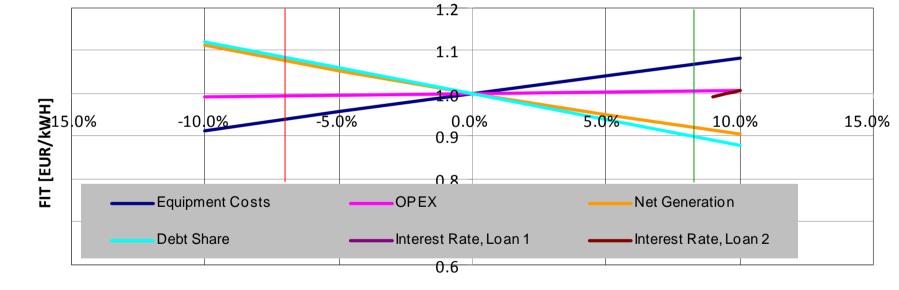
• The Gap between LEC and FiT

ECREEE Regional Workshop - ECOWAS Solar Energy Initiative (ESEI) - Dakar 2010

Lahmeyer International GmbH September 2010

0

EMPower – Lessons Learned (2)


- Gap between LEC and FiT
 - Jordan and Libya show the lowest gap: 4 and 5 c€/kWh
 - Gap is highest for Egyptian and Moroccan projects:
 10 and 8 c€/kW.
- Reasons
 - Lower corporate tax rate (e.g. Jordan 5% vs. Egypt 40%);
 - Income tax holiday (e.g. in Libya 5 years)
 - Longer loan repayment period for Jordan and Libyan
 - Higher dividend payments in first years

→ Combination of fiscal incentives and loan terms is effective mean to reduce tariff requirement by up to 10 cEUR/kWh

EMPower – Lessons Learned (3)

- Equity Share in Solar Projects
 - Equity share is most sensitive variable for CSP tariff requirement
 - +8% debt (75% to 81% share) change FiT by -10%
 - -7% debt (75% to 70% share) change FiT by +9%

→ Build Lenders Confidence in CSP and PV Projects

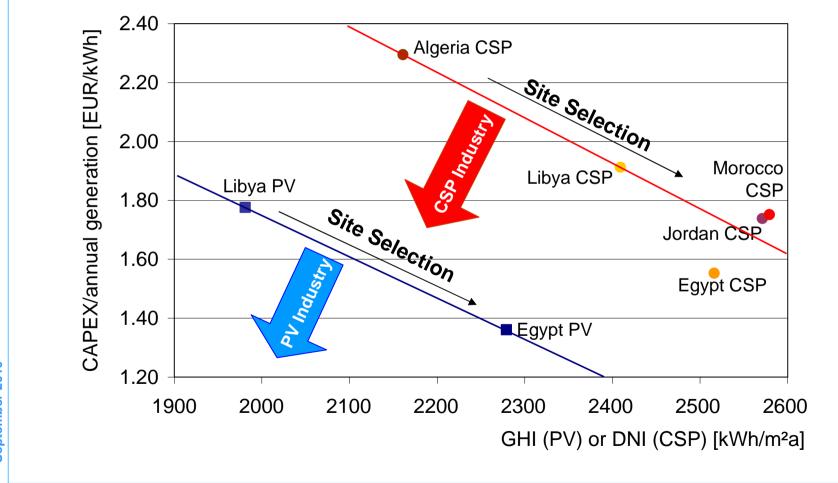
Lahmeyer International GmbH September 2010

0

EMPower – Lessons Learned (3)

- How to do Build Lender's Confidence?
- \rightarrow Recommended Measures to policy makers

(a) Simple and Consistent Framework Design(b) Assure strong long- term political commitment to Solar Power


- (c) Foresee strong guarantees for the investor's revenues
- (d) Build track record of successful policy implementation

EMPower – Lessons Learned (4)

• Generation Specific Capital Cost

0

EMPower

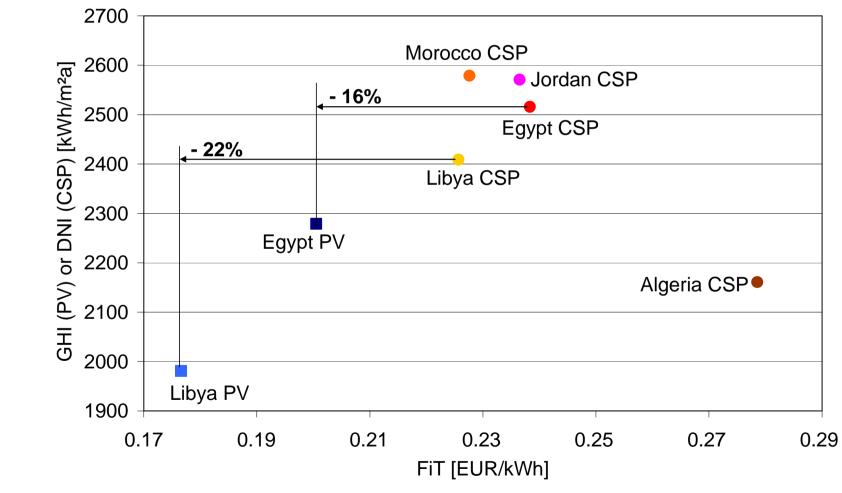
EMPower – Lessons Learned (4)

- Generation Cost
 - Not plant cost (CAPEX) is decisive but
 - Capital per energy unit generated (CAPEX/annual generation)
- CAPEX reduction potential: CSP & PV industry
- Annual Generation Increase potential
 - Site selection: very best solar resource
- Limitation: Error and uncertainty in solar radiation data
 - 15 25% in DNI for CSP projects
 - 10 15% in GHI for PV projects
- \rightarrow Recommended Measures

Lahmeyer International GmbH

0

September 2010


(a) Reference measurement network for GHI / DNI
 (b) high resolution & accuracy Radiation
 Database for DNI + GHI

EMPower – Lessons Learned (5)

• Cost comparison of CSP and PV

Lahmeyer International GmbH

0

EMPower – Lessons Learned (5)

• Comparison of CSP and PV

PV	CSP	
 Currently lower investment cost (absolute and generation specific) 	 Optional thermal energy storage for dispatchable power (same cost but eventually higher value). 	
 PV has currently a lower FiT requirement 		
 Industry mid term outlook: PV cost advantage will grow further 	 CSP has strong mid-long term cost reduction potential 	
 Modular technology: small economy of scale effect on plant level 	 Large economy of scale effect on the plant level 	
- Also suitable for smaller areas, complex terrain and roofs	- Requires large flat and horizontal terrain	
- Simple and short planning		
- Fast construction, little complexity	EMPow	

ECREEE Regional Workshop - ECOWAS Solar Energy Initiative (ESEI) – Dakar 2010

Conclusion for ECREEE

- EMPower showed strong and serious interest of countries in sunbelt to exploit solar power;
- First countries already established a solar policy, framework and support scheme;
- Cost of solar power still major barrier, however future fossil prices and volatility need to be considered;
- Concessional financing will be required. It is more effective when fiscal incentives and loan terms are combined;
- PV is short term more attractive (and feasible off-grid);
- CSP attractive for high DNI regions (> 2.500 kWh/m²a) and in combination with storage.

EMPower

Thanks for your attention!

Many thanks to the sponsors

And all partners of the project

CEL, Reliance Power, SPICE, Cepalco, NEAL, NREA, MEMR/JEPCO, ONE, REAOL, RE, CarbonAfrica, etc.

Further Information:www.empower-ph2.comContact:Werner Klaus
Lahmeyer International, Friedberger Strasse 173
61118 Bad Vilbel, Deutschland/Germany
Tel: +49 (0) 6101 55 1825
werner.klaus@lahmeyer.de